Устройство и принцип работы счетчиков Гейгера. Типы счетчиков и их сравнение между собой.
- описаны устройство и принцип работы счетчика Гейгера;
- приведены пояснения к основным его параметрам;
- представлены сведения о видах радиоактивных излучений;
- представлена информация о модификациях счетчика Гейгера;
- в понятной форме описаны различия модификаций счетчика с точки зрения их возможностей (и невозможностей) по регистрации различных видов излучений;
- описана история создания и совершенствования счетчиков Гейгера.
Специально для тех, кому некогда или нет желания читать технический текст, мы подготовили информацию этой статьи в сжатом обобщенном табличном виде – с привязкой к ассортименту нашего интернет-магазина.
типы счетчика Гейгера |
||||
цилиндрический датчик |
слюдяной датчик | |||
особенность | регистрирует лишь гамма-кванты и жесткое β-излучение | мульти-чувствительный: регистрирует все виды радиации (альфа-, бета-, гамма- и рентген-излучения) | ||
основные представители датчиков | СБМ-20, СБМ-20-1 | Бета-1 | Бета-2 | Бета-5 |
основные представители дозиметров |
Родник 3 Радэкс РД1503+ Радэкс ONE Соэкс 112 Радэкс РД1706 (2 датчика) Соэкс Экотестер 2 Экотестер 3 Соэкс Эковизор F3 Эковизор F4 Соэкс Квантум (2 датчика) |
РадиаСкан-701А РадиаСкан-801М МКС-01СА1Б МКС-01СА1М МКС-01СА1 |
Радэкс РД1008 Радэкс МКС1009 |
МКС-03СА |
преимущества | низкая цена дозиметра |
● самая высокая чувствительность к альфа-частицам; ● минимальные размеры дозиметра |
самая высокая вероятность обнаружения β-частиц | |
недостатки |
● невозможность регистрации альфа-частиц; ● косвенная регистрация только жесткого β-излучения |
низкая чувствительность к альфа-частицам из-за толстой слюды | ||
применимость на практике |
● не полный контроль радиац. фона (только по гамма-излучению); ● обнаружение источников радиации только по гамма- и жесткому β-излучениям |
● полноценный контроль радиации любого вида (α+β+Ϫ+рентген); ● возможность обнаружения опасного радона; ● проверка продуктов питания на радионуклиды; ● обнаружение опасных источников α- и β-частиц |
||
ВЫВОД |
Учитывая важность контроля присутствия (или появления) в атмосфере и в быту опасных* радионуклидов, излучающих альфа- и/или бета-частицы (скрытые и явные выбросы этих веществ в атмосферу, а также газ радон), то СТАНДАРТОМ полноценного бытового дозиметра на сегодняшний день мы видим модели на базе мульти-чувствительных слюдяных датчиков |
* - в повседневной жизни гораздо важнее контролировать присутствие и мощность именно α- и β- излучений, как намного более опасных для здоровья человека по сравнению с фоновым гамма-излучением. Именно α- и β- излучения (и, в частности, радон - их основной источник) являются одной из основных причин онкологических заболеваний человечества (ВОЗ про опасность газа радон).
Итак, теперь переходим непосредственно к статье.
Во всех бытовых и во многих профессиональных приборах дозиметрического контроля в качестве датчика радиоактивного излучения используется счетчик Гейгера. Этот компонент стал важной частью дозиметра по причине простоты, надежности и эффективности применения.
Счетчик Гейгера был изобретен в 1908 году немецким физиком-экспериментатором Хансом Вильгельмом Гейгером. В 1928 году, совместно с Вальтером Мюллером, счетчик был усовершенствован. Поэтому изобретение часто называют счетчиком Гейгера-Мюллера.
В период зарождения ядерной физики, атомной энергетики и создания ядерного оружия нужны были простые приборы для регистрации и измерения интенсивности процессов распада радиоактивных материалов. Одним из первых счетчиков Гейгера в СССР стал применяться СТС-5, который устанавливался в армейских дозиметрических приборах ДП-5А. Массовое производство таких счетчиков радиации освоил Московский электроламповый завод.
Рис.1. Газоразрядный счетчик СТС-5.
Более совершенный измеритель мощности дозы ДП-5В использовался не только в вооруженных силах и на атомных электростанциях, но и в группах дозиметрического контроля формирований гражданской обороны. Он включал в свой состав счетчик Гейгера типа СБМ-20, производство которого началось в 70-х годах прошлого столетия на одном из предприятий города Саранска.
Рис.2. Газоразрядный счетчик СБМ-20.
Конструкция и характеристики счетчиков СТС-5 и СБМ-20 практически идентичны, а последний вариант до сих пор широко применяется в современных средствах контроля радиоактивного излучения. Данный тип счетчиков используется в дозиметрах Соэкс, SMG, Радэкс.
Аренда дозиметра Радиаскан 701А от 350 рублей в день
Если Вам необходим дозиметр для измерения всех видов излучений всего на несколько дней и Вы не планируете пользоваться им регулярно, аренда дозиметра станет выгодным и практичным решением ваших задач!
Нет смысла покупать новый дозиметр или, к примеру, дешевый, с ограниченными возможностями, который не увидит до половины излучений, особенно таких как Альфа и Бета. А ведь именно эти виды излучений самые опасные.
Принцип работы счетчиков Гейгера основан на эффекте ударной ионизации газовой среды под действием радиоактивных частиц или квантов электромагнитных колебаний в межэлектродном пространстве при высоком ускоряющем напряжении.
Устройство состоит из герметичного металлического или стеклянного баллона, наполненного инертным газом (неон, аргон) или газовой смесью. Внутри баллона имеются электроды – катод и анод. Для облегчения возникновения электрического разряда в газовом баллоне создается пониженное давление. Электроды подключаются к источнику высокого напряжения постоянного тока через нагрузочный резистор, на котором формируются электрические импульсы при регистрации радиоактивных частиц.
Рис.3. Устройство и схема включения счетчика Гейгера.
В исходном состоянии газовый промежуток между электродами имеет высокое сопротивление и тока в цепи нет. Когда заряженная частица, имеющая высокую энергию, сталкивается с элементами конструкции датчика (корпус, баллон, катод), она выбивает некоторое количество электронов, которые оказываются в промежутке между электродами. Под действием ускоряющего напряжения в несколько сотен вольт электроны, находящиеся в инертном газе, начинают устремляться к аноду. На этом пути они легко ионизируют молекулы газа, выбивая вторичные электроны. Процесс многократно повторяется и количество электронов лавинообразно увеличивается, что приводит к возникновению разряда между катодом и анодом. В состоянии разряда газовый промежуток в межэлектродном пространстве становится токопроводящим, что обуславливает скачок тока в нагрузочном резисторе.
В несамогасящихся счетчиках прекращение разряда достигается отключением источника питания, что приводит счетчик Гейгера в исходное состояние. В самогасящихся галогенных счетчиках, широко применяемых в настоящее время, это достигается за счет введения в газовую среду специальных добавок (хлор, бром, йод, спирт), которые способствуют быстрому прекращению разряда. Также в качестве нагрузочного резистора используют высокоомное сопротивление – несколько единиц или десятков мегаом. Это позволяет за счет падения напряжения на резисторе (во время разряда) резко уменьшить разность потенциалов на электродах счетчика. Как правило, напряжение менее 300 вольт делает невозможным поддержание разряда, и он автоматически прекращается.
Газоразрядные счетчики предназначены только для регистрации частиц или квантов и не могут определить ни энергетические их характеристики, ни тип радиоактивного излучения, если это не предусмотрено специальной методикой измерения. Однако, сравнивая между собой различные счетчики Гейгера-Мюллера, важно понимать и правильно трактовать возможности этих устройств.
Согласно современным представлениям о физике микромира радиационное излучение можно разделить на два вида: электромагнитное (в виде поля) и корпускулярное (в виде частиц). К первому виду относятся рентгеновские и гамма-лучи. Они обладают такими же свойствами, как и радиоволны, способны распространяться на большие расстояния и легко проникать сквозь многие материалы. По своей природе они имеют импульсный характер, поэтому физики говорят, что это фотоны или кванты, то есть короткие вспышки электромагнитного излучения. Частота колебаний фотонов рентгеновского диапазона очень высокая, а частота гамма-квантов в тысячи раз большая. Принято говорить, что гамма-радиация более жесткая (по частоте), чем рентгеновские лучи, потому что оказывает на человека более разрушительное действие.
Рис.4. Кванты рентгеновского и гамма-излучения.
Ко второму виду следует отнести альфа-частицы и бета-частицы. Они образуются в результате реакций ядерного превращения одних радиоактивных изотопов в другие. Если бета-частицы представляют собой в основном поток электронов (отрицательно заряженных элементарных частиц), то альфа-частица это гораздо более крупное и устойчивое образование, состоящее из двух протонов и двух нейтронов, связанных между собой ядерными силами. Именно такой состав имеет ядро химического элемента гелия. Иными словами, альфа-частицы есть обособленные ядра гелия.
Гамма-кванты обладают высокой проникающей способностью, бета-частицы – средней, а альфа-частицы – самой низкой. Энергетические характеристики этих видов излучения имеют обратную зависимость. Альфа-частицы несут в себе самую большую разрушительную силу, так как их масса более чем в 7 тысяч раз больше, чем у бета-частиц. Но в воздухе альфа-частица не может пролететь даже нескольких сантиметров и, сталкиваясь с препятствиями, теряет свою скорость. Бета-частицы несут среднюю энергию и благодаря небольшой массе могут пролететь в воздухе несколько метров. Гамма-излучение распространяется на значительные расстояния, но затухает по мере продвижения, подчиняясь законам природы для любых электромагнитных волн.
Рис.5. Радиоактивные частицы альфа и бета типа.
Считается, что самым опасным для человека является альфа-излучение. Однако его обнаружить труднее всего, так как даже простой лист писчей бумаги для него есть непреодолимая преграда, не говоря о более плотном стеклянном или металлическом баллоне счетчика. Бета-радиоактивность выявить проще, особенно поток частиц высоких энергий, который также называют жестким (по энергии). Мягкое бета-излучение будет соответствовать потоку радиоактивных частиц малых энергий. Не все счетчики Гейгера способны обнаружить мягкое бета-излучение, так как энергии частиц явно не хватает, чтобы пробиться в датчик. Кванты гамма-излучения всегда проникают в газовый объем счетчика, но большинство из них вылетают наружу, так и не запустив ионизационный процесс. Чтобы увеличить вероятность регистрации гамма-квантов, на их пути часто ставят преграду из плотного материала – стальной или свинцовый экран определенной толщины.
Остановимся на наиболее важных характеристиках газоразрядных счетчиков Гейгера, по которым можно сравнивать и выявлять лучшие образцы из них.
-
Конструкция и назначение. Основные виды счетчиков – цилиндрические и торцевые. Первые похожи на продолговатую трубку-баллон в виде цилиндра. Ионизационная камера вторых образована круглой или прямоугольной формой тела небольшой высоты и значительной рабочей торцевой поверхностью. Реже встречаются торцевые счетчики в виде удлиненного цилиндра и малого входного окна со стороны торца. Устройства могут регистрировать как отдельный вид радиоактивного излучения (альфа, бета, гамма), так и их комбинацию (например, гамма+бета или альфа+бета+гамма). Это достигается особенностями конструкции корпуса, электродов, а также выбором материала для их изготовления.
-
Площадь входного окна или рабочей зоны. Это площадь пространства, через которое пролетают детектируемые частицы или кванты. Она напрямую связана с размерами счетчика. Чем больше эта площадь, тем больше частиц сможет уловить счетчик Гейгера в единицу времени и тем больше будет его чувствительность к радиации. Указывается в квадратных сантиметрах.
-
Собственный фон. Это излучение деталей самого счетчика или иные причины самопроизвольного срабатывания при максимальном изолировании изделия от радиационного воздействия внешней среды (например, в свинцовой камере). Минимальный фон позволяет увеличить чувствительность счетчика при малых значениях радиоактивного излучения. Если собственный фон детектора будет значительным, то часть полезной информации закроется шумом. Приводится в импульсах в секунду (имп/с).
-
Радиационная чувствительность. Показывает скорость счета при определенном уровне облучения, измеряется в импульсах в секунду (имп/с) либо в импульсах на микрорентген (имп/мкР) в пересчете на уровень 1 мкР/с. Этот параметр сильно зависит от типа стандартного источника ионизирующего излучения, по которому производят измерение. Как правило, для этой цели используют источники, включающие радионуклиды кобальт-60, цезий-137, радий-226, углерод-14 и другие. Если счетчики Гейгера, которые необходимо сравнить, тестировались от разных источников, то сделать это будет затруднительно.
-
Эффективность регистрации. По разным причинам счетчики Гейгера не могут зафиксировать все без исключения пролетающие частицы или гамма-кванты. Данная величина указывает процент фактически зарегистрированных радиоактивных частиц от всего их количества, пролетающего через площадь рабочей зоны. Этот параметр проверяют стандартными источниками на основе плутония-239 (альфа-излучатель), таллия-204 (бета-излучатель) и других радиоактивных материалов. В качестве бета-излучателей также используется система радионуклидов: стронция-90 и продукта его распада иттрия-90.
-
Диапазон регистрируемых энергий. Это энергетический спектр улавливаемых счетчиком Гейгера фотонов, альфа или бета-частиц. Может указываться как в общем, так и раздельно для каждого вида излучения. Единицы измерения – мегаэлектронвольты (МэВ) либо килоэлектронвольты (кэВ). Радиоактивные частицы, вырывающиеся в окружающее пространство, имеют широкий диапазон энергий. Но только бета-излучение достаточной энергии сможет выбить первичные электроны для начала ионизационного процесса. Только сильные альфа-частицы смогут преодолеть воздушную прослойку и стенку входного окна между источником и камерой счетчика Гейгера.
Сегодня промышленность выпускает широкий ассортимент счетчиков Гейгера-Мюллера для нужд приборостроительной отрасли. Рассмотрим наиболее типичные из них, которые нашли применение в современных дозиметрических приборах.
Регистрация гамма-фотонов и жесткого бета-излучения. На это способны практически все классические счетчики Гейгера, выпускаемые как в прошлом столетии, так и в настоящее время. Оба вида излучения несут высокую энергию и обладают большой проникающей способностью. Такие кванты и частицы легко проникают в тонкостенный стеклянный или металлический баллон детектора и обнаруживаются электронной схемой.
Популярный цилиндрический счетчик СБМ-20 предназначен для подобных целей. Он имеет вид герметичной трубки-баллона с расположенным коаксиально внутри проволочным анодом. Причем трубка одновременно служит корпусом и катодом, изготовленным из тонкой нержавеющей стали. Площадь рабочей зоны датчика составляет примерно 8 кв. см. Радиационная чувствительность к гамма-излучению (по цезию-137 при 4 мкР/с) около 70 имп/мкР или 280 имп/с, собственный фон не более 1 имп/с. Этот счетчик способен регистрировать гамма-кванты с энергией от 0,05 МэВ до 3 МэВ. А также бета-частицы, имеющие энергию с нижним пределом 0,3 МэВ.
Рис.6. Устройство счетчика Гейгера СБМ-20.
Существующие модификации счетчика СБМ-20-1, СБМ-20У имеют такие же параметры и отличаются лишь конструкцией контактных элементов для подключения к измерительной схеме. Аналогичные счетчики Гейгера цилиндрического типа разных производителей (СБМ-10, СБМ-19, СБМ-21, СИ24БГ, СИ29БГ) имеют похожую конструкцию и характеристики, некоторые из них встречаются в бытовых дозиметрах.
Обнаружение фотонов рентгеновского и гамма-излучения. Так как фотонное излучение представляет собой дискретные порции (кванты) электромагнитной энергии, которые движутся со скоростью света, то есть 300000 км/с, то эффективность регистрации их счетчиками Гейгера довольно низкая и часто не превышает 1 процента. Повышения эффективности добиваются увеличением поверхности катода. Гамма-кванты обнаруживаются косвенно, путем регистрации выбитых ими электронов, участвующих затем в актах ионизации газовой смеси в камере. Для увеличения количества таких электронов подбирают толщину, а также материал корпуса и катода датчика. Слишком большая толщина и плотность материала может уменьшить эффективность регистрации, а слишком малая – откроет доступ для жесткого бета-излучения.
Гамма-счетчики находят применение в дозиметрии для прямого измерения гамма-фона, исключая другие виды радиоактивного воздействия, а также для оценки радиационной обстановки или радиоактивного заражения объектов по гамма-излучению. В дозиметрической аппаратуре применяются цилиндрические датчики типа СИ21Г, СИ22Г, СИ34Г, Гамма-1-1, Гамма-4, Гамма-5, Гамма-7Ц (конструктивный аналог СБМ-20), Гамма-8, Гамма-11 и многие другие. Также существуют варианты, имеющие торцевую конструкцию, во входном окне которой установлен несъемный металлический фильтр, отсекающий альфа-бета-излучение и увеличивающий площадь катода. Например, Гамма-6, Бета-1М, Бета-2М, Бета-5М (прямоугольной формы), Бета-6М и другие. Для примера рассмотрим характеристики одного из них.
Торцевой счетчик Бета-2М имеет круглую форму и значительную площадь рабочей зоны, составляющую приблизительно 14 кв. см. Радиационная чувствительность к кобальту-60 – 240 имп/мкР. Максимальный собственный фон в толстостенной свинцовой камере не превышает 1 имп/с. Датчик позволяет регистрировать ионизирующее фотонное излучение в диапазоне от 0,05 МэВ до 3 МэВ.
Рис.7. Торцевой гамма-счетчик Бета-2М.
В качестве гамма-счетчиков могут применяться гамма-бета-счетчики, предназначенные для регистрации гамма-лучей и жесткого бета-излучения (например, СБМ-20). Если поверх такого датчика установить свинцовый либо стальной экран определенной толщины, то это исключит возможность регистрации счетчиком бета-частиц. Так и поступают во многих случаях разработчики, создающие гамма-дозиметры для измерения мощности дозы фотонов рентгеновского или гамма-излучения.
Регистрация гамма и мягкого бета-излучения. Зафиксировать мягкое бета-излучение – непростая задача. Обычно здесь используются торцевые счетчики Гейгера, в которых предусматривается тонкое окно из слюды или полимерной пленки для облегчения проникновения бета-частиц небольших энергий в ионизационную камеру. Если у цилиндрического счетчика катод имеет максимальную поверхность и всегда стоит на пути движения радиоактивных частиц, то у модели торцевого типа преградой является только слюдяная пленка. Катодом может служить металлический корпус, а анод реализуют в виде системы линейных электродов, равномерно уложенных в ионизационной камере на изоляторах. В многосекционных вариантах аноды электрически развязаны. Регистрация гамма-излучения в торцевых счетчиках существует как бесплатное приложение, от которого пытаются избавиться, минимизировав поверхность катода.
Рис.8. Устройство торцевого счетчика Гейгера.
Торцевые счетчики мягкого бета-излучения созданы давно. Такие типы как СБТ10, СИ8Б, имеющие входные слюдяные окна, применялись в дозиметрах разработки конца прошлого века. Современный вариант счетчика Бета-5 имеет форму прямоугольника с площадью слюдяного окна 37 кв. см. При такой большой рабочей зоне датчик способен достичь радиационной чувствительности 500 имп/мкР (к кобальту-60). Собственный фон – не более чем 2,2 имп/с. Эффективность детектирования бета-частиц доходит до 80%. Диапазон энергий фотонного излучения 0,05–3 МэВ. Нижний порог энергий бета-излучения – около 0,1 МэВ.
Рис.9. Торцевой бета-гамма-счетчик Бета-5.
Регистрация гамма-квантов, мягкого бета-излучения и альфа-частиц. Поймать альфа-частицу, даже имеющую высокую энергию, проблема более сложная, чем зарегистрировать мягкое бета-излучение. Она решается уменьшением толщины слюдяной пленки входного окна и максимальным сближением (до 1 мм) источника радиации с датчиком. Возможность регистрации остальных видов излучения, как и в предыдущем случае, будет являться бесплатным приложением или побочным эффектом, хотя и может использоваться разработчиками дозиметрической аппаратуры в своих конструкциях. Перед производителями альфа-счетчиков всегда стояла задача уменьшения толщины слюдяного окна. Но тонкая слюда не может обеспечить механическую прочность и герметичность ионизационной камеры при достаточной площади входного окна, от которой зависит радиационная чувствительность. Например, при толщине слюды 13–17 мкм удается достичь площади окна в 30 кв. см (СБТ10, СИ8Б). А толщина слюды 4–5 мкм позволяет создать счетчик с входным окном всего лишь 0,2 кв. см (СБТ9).
Следует отметить, что расчетная толщина слюдяной пленки, при которой возможна регистрация альфа-частиц с энергией около 5 МэВ (от альфа-излучателя плутония-239) при сближении образца с поверхностью входного окна счетчика Гейгера не далее 2 мм, не должна превышать 15 мкм. При толщине слюды 10 мкм альфа-частицы можно обнаружить на удалении 13 мм, а если слюда на датчике будет иметь толщину в 5 мкм, то дальность повышается до 24 мм. Если частицы будут иметь энергию большую 5 МэВ, это расстояние увеличивается. При меньшей энергии оно сокращается вплоть до потери возможности детектирования альфа-излучения.
Вторым способом увеличения радиационной чувствительности альфа-счетчика Гейгера является снижение влияния сопутствующего гамма-излучения. Его минимизируют путем уменьшения поверхности катода. Эта мера позволяет сократить влияние мешающей гамма-радиации в тысячи раз. Помехи от бета-излучения устраняются методикой измерения. Она заключается в том, что вначале определяется сумма альфа-бета-излучения, затем устанавливается бумажный фильтр и оценивается величина составляющей радиации от бета-частиц. Значение альфа-излучения вычисляется как разность двух промежуточных результатов.
Рассмотрим характеристики современного альфа-бета-гамма-счетчика Гейгера Бета-1. Площадь его входного окна составляет 7 кв. см, толщина слюды – 12 мкм, что позволяет регистрировать альфа-частицы на расстоянии до 9 мм (по плутонию-239). Относительно кобальта-60 радиационная чувствительность достигает 144 имп/мкР. Данные эффективности детектирования производитель приводит по трем источникам: к плутонию-239 – 20%, к таллию-204 – 45%, к комплексу стронций-90 + иттрий-90 – 60%. Максимальный собственный фон – 0,6 имп/с. Счетчик Бета-1 может уверенно обнаруживать альфа частицы, начиная с энергий 5 МэВ, бета-излучение с энергией более 0,1 МэВ. Спектр энергий для гамма-излучения лежит в пределах 0,05–3 МэВ. Данный тип счетчиков используется в дозиметрах Радиаскан и МКС.
Рис.10. Торцевой альфа-бета-гамма-счетчик Бета-1.
Кроме приведенных в статье основных характеристик счетчиков Гейгера, есть и другие (радиометрические, электрические, механические, климатические), предназначенные для специалистов. Например, рабочее напряжение, мертвое время, протяженность плато, межэлектродная емкость и так далее. Однако для непрофессионального пользователя, который желает разобраться в принципах действия счетчика Гейгера, незнание этих понятий не станет препятствием. Также имеется подкласс счетчиков Гейгера для детектирования фотонов ультрафиолетового излучения и устройств для регистрации медленных нейтронов, функционирующих по принципу коронного разряда и в пропорциональном режиме, которые здесь не рассмотрены.
Какой бытовой дозиметр выбрать?
Позвоните прямо сейчас по телефонам: 8 (800) 333-09-18
и получите качественную консультацию по выбору прибора!